Extended Supervised Descent Method for Robust Face Alignment
نویسندگان
چکیده
Supervised Descent Method (SDM) is a highly efficient and accurate approach for facial landmark locating/face alignment. It learns a sequence of descent directions that minimize the difference between the estimated shape and the ground truth in HOG feature space during training, and utilize them in testing to predict shape increment iteratively. In this paper, we propose to modify SDM in three respects: 1) Multi-scale HOG features are applied orderly as a coarse-to-fine feature detector; 2) Global to local constraints of the facial features are considered orderly in regression cascade; 3) Rigid Regularization is applied to obtain more stable prediction results. Extensive experimental results demonstrate that each of the three modifications could improve the accuracy and robustness of the traditional SDM methods. Furthermore, enhanced by the three-fold improvements, the extended SDM compares favorably with other state-of-the-art methods on several challenging face data sets, including LFPW, HELEN and 300 Faces in-the-wild.
منابع مشابه
Supervised Descent Method
In this dissertation, we focus on solving Nonlinear Least Squares problems using a supervised approach. In particular, we developed a Supervised Descent Method (SDM), performed thorough theoretical analysis, and demonstrated its effectiveness on optimizing analytic functions, and four other real-world applications: Inverse Kinematics, Rigid Tracking, Face Alignment (frontal and multi-view), and...
متن کاملSupervised Descent Method for Solving Nonlinear Least Squares Problems in Computer Vision
Many computer vision problems (e.g., camera calibration, image alignment, structure from motion) are solved with nonlinear optimization methods. It is generally accepted that second order descent methods are the most robust, fast, and reliable approaches for nonlinear optimization of a general smooth function. However, in the context of computer vision, second order descent methods have two mai...
متن کاملFeature Fusion using Extended Jaccard Graph and Stochastic Gradient Descent for Robot
Robot vision is a fundamental device for humanrobot interaction and robot complex tasks. In this paper, we use Kinect and propose a feature graph fusion (FGF) for robot recognition. Our feature fusion utilizes RGB and depth information to construct fused feature from Kinect. FGF involves multi-Jaccard similarity to compute a robust graph and utilize word embedding method to enhance the recognit...
متن کاملSemi-supervised Learning Based on Distributionally Robust Optimization
We propose a novel method for semi-supervised learning (SSL) based on data-driven distributionally robust optimization (DRO) using optimal transport metrics. Our proposed method enhances generalization error by using the unlabeled data to restrict the support of the worst case distribution in our DRO formulation. We enable the implementation of our DRO formulation by proposing a stochastic grad...
متن کاملAn Information-Theoretic Framework for Fast and Robust Unsupervised Learning via Neural Population Infomax
A framework is presented for unsupervised learning of representations based on infomax principle for large-scale neural populations. We use an asymptotic approximation to the Shannon’s mutual information for a large neural population to demonstrate that a good initial approximation to the global information-theoretic optimum can be obtained by a hierarchical infomax method. Starting from the in...
متن کامل